A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
نویسندگان
چکیده
Improvement of variant calling in next-generation sequence data requires a comprehensive, genome-wide catalog of high-confidence variants called in a set of genomes for use as a benchmark. We generated deep, whole-genome sequence data of 17 individuals in a three-generation pedigree and called variants in each genome using a range of currently available algorithms. We used haplotype transmission information to create a phased "Platinum" variant catalog of 4.7 million single-nucleotide variants (SNVs) plus 0.7 million small (1-50 bp) insertions and deletions (indels) that are consistent with the pattern of inheritance in the parents and 11 children of this pedigree. Platinum genotypes are highly concordant with the current catalog of the National Institute of Standards and Technology for both SNVs (>99.99%) and indels (99.92%) and add a validated truth catalog that has 26% more SNVs and 45% more indels. Analysis of 334,652 SNVs that were consistent between informatics pipelines yet inconsistent with haplotype transmission ("nonplatinum") revealed that the majority of these variants are de novo and cell-line mutations or reside within previously unidentified duplications and deletions. The reference materials from this study are a resource for objective assessment of the accuracy of variant calls throughout genomes.
منابع مشابه
A reference dataset of 5.4 million human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree
Improvement of variant calling in next-generation sequence data requires a comprehensive, genomewide catalogue of high-confidence variants called in a set of genomes for use as a benchmark. We generated deep, whole-genome sequence data of seventeen individuals in a three-generation pedigree and called variants in each genome using a range of currently available algorithms. We used haplotype tra...
متن کاملRead-based phasing of related individuals
MOTIVATION Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that uses these two independent sources of information-reads and pedigree-has the potentia...
متن کاملImplementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss
Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task. Method: An application software...
متن کاملImplementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss
Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task. Method: An application software...
متن کاملIdentification of rare variants from exome sequence in a large pedigree with autism.
We carried out analyses with the goal of identifying rare variants in exome sequence data that contribute to disease risk for a complex trait. We analyzed a large, 47-member, multigenerational pedigree with 11 cases of autism spectrum disorder, using genotypes from 3 technologies representing increasing resolution: a multiallelic linkage marker panel, a dense diallelic marker panel, and variant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2017